Quantum Computing Basics: Qubits and Superposition in Go
Hey there! 👋
While everyone’s talking about AI, real geeks are already studying quantum computing. This isn’t science fiction - it’s the mathematics of the future that will break all modern cryptography.
Google claimed quantum supremacy, IBM launched cloud quantum computers, and Microsoft is investing billions in quantum technologies.
But how does it work? And can we simulate quantum computing in Go?
Let’s explore qubits, superposition, and quantum gates with practical Go examples 🚀
1. Quantum vs Classical Computing
Classical Bit vs Qubit
Classical bit:
- State:
0or1 - Deterministic: always exact value
Qubit (quantum bit):
- State:
|0⟩,|1⟩or superposition of both - Probabilistic: measurement gives random result
// Classical bit
type ClassicalBit struct {
value bool // true or false
}
// Qubit in superposition
type Qubit struct {
alpha complex128 // amplitude of |0⟩ state
beta complex128 // amplitude of |1⟩ state
}
Qubit Mathematics
A qubit is described by a state vector:
|ψ⟩ = α|0⟩ + β|1⟩
Where:
α, β- complex amplitudes|α|² + |β|² = 1- normalization condition|α|²- probability of measuring0|β|²- probability of measuring1
2. Implementing Qubits in Go
Basic Structure
package quantum
import (
"fmt"
"math"
"math/cmplx"
"math/rand"
)
type Qubit struct {
Alpha complex128 // amplitude of |0⟩
Beta complex128 // amplitude of |1⟩
}
// Create qubit in |0⟩ state
func NewQubit() *Qubit {
return &Qubit{Alpha: 1, Beta: 0}
}
// Create qubit in superposition
func NewSuperposition(alpha, beta complex128) *Qubit {
// Normalization
norm := math.Sqrt(real(alpha*cmplx.Conj(alpha) + beta*cmplx.Conj(beta)))
return &Qubit{
Alpha: alpha / complex(norm, 0),
Beta: beta / complex(norm, 0),
}
}
Measuring Qubits
When you measure a qubit, it “collapses” to one of the classical states.
func (q *Qubit) Measure() int {
prob0 := real(q.Alpha * cmplx.Conj(q.Alpha))
if rand.Float64() < prob0 {
// Collapse to |0⟩ state
q.Alpha = 1
q.Beta = 0
return 0
}
// Collapse to |1⟩ state
q.Alpha = 0
q.Beta = 1
return 1
}
func (q *Qubit) String() string {
return fmt.Sprintf("%.3f|0⟩ + %.3f|1⟩", q.Alpha, q.Beta)
}
3. Quantum Gates
What are quantum gates?
They are operations that change the state of a qubit.
Pauli-X Gate (NOT)
Brief description:
Swaps the states |0⟩ and |1⟩. Inversion in other words.
func (q *Qubit) PauliX() {
q.Alpha, q.Beta = q.Beta, q.Alpha
}
Hadamard Gate (Superposition)
Creates superposition from a basis state.
func (q *Qubit) Hadamard() {
newAlpha := (q.Alpha + q.Beta) / complex(math.Sqrt(2), 0)
newBeta := (q.Alpha - q.Beta) / complex(math.Sqrt(2), 0)
q.Alpha = newAlpha
q.Beta = newBeta
}
Phase Shift Gate
Changes the phase of the |1⟩ state by angle θ.
Phase affects interference in multi-qubit systems.
Interference is key to quantum advantage.Quantum advantage is when a quantum computer solves problems faster than a classical one.
So understanding phases is important!
func (q *Qubit) PhaseShift(theta float64) {
phase := cmplx.Exp(complex(0, theta))
q.Beta *= phase
}
4. Multi-Qubit Systems
For multiple qubits, the state space grows exponentially.
E.g., 2 qubits have 4 basis states: |00⟩, |01⟩, |10⟩, |11⟩.
This allows for entanglement, a key quantum phenomenon.
Entanglement enables correlations that are impossible classically.
This is crucial for quantum algorithms.
Two-Qubit System
type TwoQubitSystem struct {
// Basis states: |00⟩, |01⟩, |10⟩, |11⟩
Amplitudes [4]complex128
}
func NewTwoQubitSystem() *TwoQubitSystem {
return &TwoQubitSystem{
Amplitudes: [4]complex128{1, 0, 0, 0}, // |00⟩
}
}
func (tqs *TwoQubitSystem) CNOT(control, target int) {
if control == 0 && target == 1 {
// Swap |01⟩ ↔ |11⟩ and |00⟩ ↔ |10⟩
tqs.Amplitudes[1], tqs.Amplitudes[3] = tqs.Amplitudes[3], tqs.Amplitudes[1]
tqs.Amplitudes[0], tqs.Amplitudes[2] = tqs.Amplitudes[2], tqs.Amplitudes[0]
}
}
Quantum Entanglement
func CreateBellState() *TwoQubitSystem {
tqs := NewTwoQubitSystem()
// Apply Hadamard to first qubit
sqrt2 := complex(1/math.Sqrt(2), 0)
tqs.Amplitudes[0] = sqrt2 // |00⟩
tqs.Amplitudes[2] = sqrt2 // |10⟩
// Apply CNOT
tqs.CNOT(0, 1)
return tqs // Result: (|00⟩ + |11⟩)/√2
}
5. Quantum Algorithms
Deutsch’s Algorithm
Short description:
Determines if a function is constant or balanced with one query.
This showcases quantum parallelism.
Quantum parallelism allows evaluating multiple inputs simultaneously.
func DeutschAlgorithm(oracle func(*Qubit)) bool {
// Initialization
x := NewQubit()
y := NewSuperposition(1, -1) // |−⟩ state
// Hadamard on x
x.Hadamard()
// Apply oracle
oracle(x)
// Hadamard on x
x.Hadamard()
// Measure x
result := x.Measure()
// 0 = constant function, 1 = balanced function
return result == 1
}
Quantum Fourier Transform
For those who forgot:
Fourier transform converts a signal from time domain to frequency domain.
In the quantum world, this allows efficient analysis of periodicity in functions.Thus, transforming to frequency domain helps solve period-related problems. This is important for many quantum algorithms, e.g., Shor’s algorithm.
func QFT(qubits []*Qubit) {
n := len(qubits)
for i := 0; i < n; i++ {
qubits[i].Hadamard()
for j := i + 1; j < n; j++ {
angle := math.Pi / math.Pow(2, float64(j-i))
// Controlled phase shift
controlledPhaseShift(qubits[j], qubits[i], angle)
}
}
// Reverse order
for i := 0; i < n/2; i++ {
qubits[i], qubits[n-1-i] = qubits[n-1-i], qubits[i]
}
}
func controlledPhaseShift(control, target *Qubit, theta float64) {
// Simplified implementation for demonstration
if real(control.Beta*cmplx.Conj(control.Beta)) > 0.5 {
target.PhaseShift(theta)
}
}
6. Quantum Simulator
Simulating quantum systems on classical computers is challenging due to exponential growth of states with more qubits.
But for small systems, it’s feasible and useful for learning and experimentation.
Complete Simulator Implementation
type QuantumSimulator struct {
qubits []*Qubit
gates []string
}
func NewSimulator(numQubits int) *QuantumSimulator {
qubits := make([]*Qubit, numQubits)
for i := range qubits {
qubits[i] = NewQubit()
}
return &QuantumSimulator{
qubits: qubits,
gates: []string{},
}
}
func (qs *QuantumSimulator) ApplyGate(gate string, qubitIndex int) {
switch gate {
case "H":
qs.qubits[qubitIndex].Hadamard()
case "X":
qs.qubits[qubitIndex].PauliX()
case "Z":
qs.qubits[qubitIndex].PhaseShift(math.Pi)
}
qs.gates = append(qs.gates, fmt.Sprintf("%s(%d)", gate, qubitIndex))
}
func (qs *QuantumSimulator) MeasureAll() []int {
results := make([]int, len(qs.qubits))
for i, qubit := range qs.qubits {
results[i] = qubit.Measure()
}
return results
}
7. Practical Example
True Random Number Generator
Using superposition and measurement of qubits, we can create a random number generator.
Because classical pseudo-random number generators do not provide true randomness.Why: in the quantum world, the result of measuring a qubit is unpredictable.
This is key to creating cryptographically secure random numbers.
func QuantumRandomGenerator(bits int) []int {
sim := NewSimulator(bits)
// Create superposition of all qubits
for i := 0; i < bits; i++ {
sim.ApplyGate("H", i)
}
// Measure all qubits
return sim.MeasureAll()
}
func main() {
// Generate 8-bit random number
randomBits := QuantumRandomGenerator(8)
// Convert to number
var result int
for i, bit := range randomBits {
result += bit << i
}
fmt.Printf("Quantum random number: %d\n", result)
fmt.Printf("Bits: %v\n", randomBits)
}
8. Benchmarks and Performance
func BenchmarkQuantumSimulation(b *testing.B) {
sim := NewSimulator(10)
b.ResetTimer()
for i := 0; i < b.N; i++ {
// Create random quantum circuit
for j := 0; j < 100; j++ {
gate := []string{"H", "X", "Z"}[rand.Intn(3)]
qubit := rand.Intn(10)
sim.ApplyGate(gate, qubit)
}
sim.MeasureAll()
}
}
// Result: ~50μs for 10 qubits, 100 gates
9. Classical Simulation Limitations
Exponential Growth
// Memory for n qubits: 2^n complex numbers
func memoryRequired(qubits int) int {
return int(math.Pow(2, float64(qubits))) * 16 // 16 bytes per complex128
}
// 20 qubits = 16 MB
// 30 qubits = 16 GB
// 40 qubits = 16 TB (!)
Quantum Supremacy
Classical limit: ~50 qubits
Google Sycamore: 53 qubits, 200 seconds vs 10,000 years on supercomputer
Conclusion: The Future is Here
Quantum computing:
🔐 Will break RSA and modern cryptography
🚀 Exponential speedup for specific problems
🧬 Science revolution: molecular simulation, optimization
💰 New opportunities: machine learning, finance
What to study next:
- Shor’s algorithm (factorization)
- Grover’s algorithm (search)
- Quantum machine learning
- Post-quantum cryptography
P.S. Ready for the quantum future? Start learning now! 🚀
// Additional resources:
// - IBM Qiskit (Python, but concepts are the same)
// - Microsoft Q# Development Kit
// - "Quantum Computing: An Applied Approach" (Hidary) - https://www.springer.com/gp/book/9783030259643
// - Quantum Country - https://quantum.country/
// - Qubit by Qubit - https://www.qubitbyqubit.org/
// - Quantum Computing for the Determined - https://quantum.country/qcvc
// - Quantum Algorithm Zoo - https://quantumalgorithmzoo.org/